Variational quantum mechanical and active database approaches to the rotational-vibrational spectroscopy of ketene, H2CCO.
نویسندگان
چکیده
A variational quantum mechanical protocol is presented for the computation of rovibrational energy levels of semirigid molecules using discrete variable representation of the Eckart-Watson Hamiltonian, a complete, "exact" inclusion of the potential energy surface, and selection of a vibrational subspace. Molecular symmetry is exploited via a symmetry-adapted Lanczos algorithm. Besides symmetry labels, zeroth-order rigid-rotor and harmonic-oscillator quantum numbers are employed to characterize the computed rovibrational states. Using the computational molecular spectroscopy algorithm presented, a large number of rovibrational states, up to J = 50, of the ground electronic state of the parent isotopologue of ketene, H(2) (12)C=(12)C=(16)O, were computed and characterized. Based on 12 references, altogether 3982 measured and assigned rovibrational transitions of H(2) (12)C=(12)C=(16)O have been collected, from which 3194 were validated. These transitions form two spectroscopic networks (SN). The ortho and the para SNs contain 2489 and 705 validated transitions and 1251 and 471 validated energy levels, respectively. The computed energy levels are compared with energy levels obtained, up to J = 41, via an inversion protocol based on this collection of validated measured rovibrational transitions. The accurate inverted energy levels allow new assignments to be proposed. Some regularities and irregularities in the rovibrational spectrum of ketene are elucidated.
منابع مشابه
Substituent effects on structural stability of formyl ketene and analysis of vibrational spectra of formyl haloketenes and formyl methylketene.
The conformational behavior and the structural stability of formyl fluoroketene, formyl chloroketene and formyl methylketene were investigated by utilizing quantum mechanical DFT calculations at B3LYP/6-31I + + G** and ab initio calculations at MP2/6-311 + + G** levels. The three molecules were predicted to have a planar s-cis<-->s-trans conformational equilibrium. From the calculations, the di...
متن کاملTheoretical evidence for the formation of rotational energy level clusters in the vibrational ground state of PH3.
We investigate theoretically the rotational dynamics of pyramidal XY3 molecules in highly excited rotational states. Towards this end we compute, by a variational method, the rotational energy levels in the vibrational ground state of PH3 for J < or = 80. At J > or = 50 the calculated energy levels show a distinct cluster pattern. By monitoring the cluster formation we follow the various stages...
متن کاملThe fourth age of quantum chemistry: molecules in motion.
Developments during the last two decades in nuclear motion theory made it possible to obtain variational solutions to the time-independent, nuclear-motion Schrödinger equation of polyatomic systems as "exact" as the potential energy surface (PES) is. Nuclear motion theory thus reached a level whereby this branch of quantum chemistry started to catch up with the well developed and widely applied...
متن کاملAnharmonic analysis of the vibrational spectrum of ketene by density functional theory using second-order perturbative approach.
The paper reports main results of a comprehensive study of the vibrational spectrum of ketene computed using second-order perturbation theory treatment based on quartic, cubic and semidiagonal quartic force constants. Two different models--a homogeneous model using the same density functionals and basis functions for the harmonic calculations and anharmonic corrections, and a hybrid model in wh...
متن کاملThe Spectrum of Hot Water: Rotational Transitions and Difference Bands in the (020), (100), and (001) Vibrational States
Analysis of the hot H2 16O spectrum, presented by Polyansky et al. (1996, J. Mol. Spectrosc. 176, 305-315), is extended to higher vibrational states. Three hundred thirty mainly strong lines are assigned to pure rotational transitions in the (100), (001), and (020) vibrational states. These lines, which involve significantly higher rotational energy levels than were known previously, are assign...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 135 9 شماره
صفحات -
تاریخ انتشار 2011